If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+6n-5=0
a = 2; b = 6; c = -5;
Δ = b2-4ac
Δ = 62-4·2·(-5)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{19}}{2*2}=\frac{-6-2\sqrt{19}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{19}}{2*2}=\frac{-6+2\sqrt{19}}{4} $
| -3+5x=-6x+8 | | 2x+2x+(5-2x)=17 | | 2x+2x+(5/2x)=17 | | -5+12x=32 | | 6x2+x-6=0 | | 2x+2x+(5*2x)=17 | | -64=-9x+8 | | 5-12x=-32 | | 118-v=186 | | 2(7x-5)=4x-50 | | 7v/28=-28 | | 4x^2+14x-158=0 | | 75/y+9=21,5 | | 4/3^x=4/9 | | 1/3(x+6)=2x | | 3+1p=24 | | 232=19-v | | 13x+7=7=8x+27 | | 1/3(x+6)=10 | | R(x)=15+144x-4x^2 | | 7g+5=3g+5+4g | | 19-v=232 | | 16×8y=1152÷y | | 6g+5=3g+5+4g+g | | 5^x+4=1/25 | | 4^2x-3=8 | | 7n+4=28 | | f/3.2=-2.1 | | 7x=-8+9x | | 2.8x+12=−1.4x−9 | | 2x+2x+(5+2x)=17 | | X+2/5x=91 |